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Abstract. The electron energy shifts and mean tunnelling lifetimes in a quantum well with
different potential profiles under an applied electric field are calculated using Fourier series methods.
In the present work, single-rectangular, symmetric double, and diffusion-modified quantum wells
have been taken into account. The mean lifetime at high field strength obtained from the time
evolution of the wave packets is found to be lower than that obtained from the conventional standing-
wave approach.

1. Introduction

Quantum wells (QWs) show great promise for the fabrication of many novel devices such as
infrared detectors, semiconductor lasers, and tunnelling devices. In particular, considerable
effort has been devoted to the development of the ultrahigh-speed resonant tunnelling diode
[1, 2]. Most of these devices, however, operate under an applied electric field, making an
understanding of the mean tunnelling lifetime in these devices essential. Since tunnelling is
a quantum phenomenon, a wave mechanical treatment is needed [2]. On the other hand, the
fundamental aspects of the tunnelling processes can be understood using the QW as a tool,
which is the main motivation of this work.

The calculation of the energy levels in a rectangular quantum well has been carried out
using the first-principles pseudopotential theory [3]. Recently Vlaev and Contreras-Solorio
have employed tight-binding calculations in order to obtain an understanding of the optical
transitions between the ground electron and hole states in both single-rectangular and diffusion-
modified quantum wells [4]. Although these calculations give more insight into the problem,
they are quite complicated to apply. On the other hand, the implementation of the effective-
mass equation and the envelope function approximation for studying tunnelling processes is
rather simple.

Austin and Jaros in their pioneering work combined the Airy function method with
the scattering approach in order to achieve an understanding of the tunnelling process in
the single-rectangular quantum well [5–8]. This method calculates the energy shifts and
resonance widths at different electric field strengths very accurately. Later the Airy function
approach was simplified by Ahn and Chuang [9] to obtain the energy and resonance width
directly from the boundary conditions. However, this method deals with Airy functions of
complex arguments, and one needs to find the roots of a complex determinant to estimate the
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energies and resonance widths. Ghataket al further simplified the method by calculating
the energy and mean tunnelling lifetimes from the coefficients of Airy functions of real
arguments [10]. The transfer matrix method can then be used to extend the Airy function
approach so as to obtain energies and lifetimes in a QW with a non-rectangular well [10,11].
The effect of the barrier effective mass has also been considered in this method and it
is found to have a significant effect on the energies, wavefunctions, and mean tunnelling
lifetimes [11,12].

Several alternative numerical approaches such as the finite-difference method [13–15],
finite-element method [16], complex-coordinate approach [17], and Fourier series method
[18,19] have been successfully applied to calculate energies and wavefunctions for any form
of the QW. In these methods, the solution is obtained over a distanceLwhich is the sum of the
well widths and barrier widths. The convergence of energies and wavefunctions is checked by
varyingL. The boundary condition in this method is that the wavefunction vanishes at both
ends of the distanceL, which is equivalent to putting two infinite barriers there. Nakamuraet al
have shown that an infinite barrier in the direction of the electric field results in the formation
of a triangular potential [16]. In the Schrödinger equation solution, the eigenstates of this
triangular well are coupled with the real eigenstates of the QW. As a result of this, it is not
straightforward to separate the states that are formed in the triangular well from the real states
in the QW [16]. In addition to this, a definite choice of an appropriate value of theL for a
particular QW and high electric field strength is not clear in this method.

Although it appears that achieving the correct understanding of the Stark shift is not
possible with a numerical method, the presentation of a stabilization graph (SG), which shows
energy levels as a function ofL [20], gives a clear understanding of the situation. The avoided
crossings between stable and continuum states are typical of SGs. Using the Fermi golden
rule in the SG, the energies and lifetimes were estimated earlier for different QWs [20, 21].
Although the method of extracting lifetimes from the SG presents more physical insight into
the process involved, it suffers from lack of accuracy [20].

Unfortunately the method of estimating quasi-bound energies and lifetimes from the SG is
applicable only in the low-electric-field region. With high electric field the quasi-bound energy
becomes negative, and there is a finite probability of finding the wavefunction at infinity. In
order to obtain oscillations in the wavefunction outside the well region, further care is necessary
to remove the effect of the triangular well.

Although the calculation of the energy shifts from the time-independent Schrödinger
equation is a correct method, the stationary wavefunctions in this method do not present any
field-induced dynamical picture of the electron. For estimating the lifetime of the electron,
different characteristic lifetimes such as the hesitation time, passage time, and dwell time
have been proposed, using time-dependent analysis [22, 23]. Therefore this method allows
for a more complete description of the electron behaviour, especially in the high-electric-field
regions.

In our earlier work, the finite-difference scheme was employed to obtain energies, wave-
functions, and lifetimes in different QW structures [14,15]. Since the plane waves are ortho-
normalized, the Fourier series in the plane-wave basis set is an attractive method for solving
eigenvalue equations in different physical problems. In our earlier work, this method was
found to be efficient in calculating the energy shifts in the arbitrary form of the QW under
low electric fields [19]. In the present work, we have extended this method in order to obtain
the SG, and adopted an accurate method for obtaining energies and lifetimes from it when
the applied electric field is low. For high electric field, a fast numerical scheme based on the
Fourier series method is developed for solving the time-dependent Schrödinger equation, and
then the probability of tunnelling is calculated in order to obtain lifetimes from it.
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2. Method

The energies and wavefunctions in a QW are obtained by solving the time-independent
BenDaniel–Duke effective-mass equation [24] which adequately takes the position dependence
of the effective massm∗(z) into account in the kinetic energy operator. Under a uniform electric
field F it is given as[

− h̄
2

2

∂

∂z

1

m∗(z)
∂

∂z
+ V (z) + eFz

]
9n(z) = En9n(z). (2.1)

We have used the Fourier series method [18, 19] to solve equation (2.1). In this method the
wavefunction9n(z) is expanded in terms of plane waves as

9n(z) =
√

1

L

∑
k

Cn(k)e
i(2πk/L)z (2.2)

where i= √−1. The potential profile of the wellV (z) is expanded in a Fourier series as

V (z) =
∑
k

V(k)ei(2πk/L)z (2.3)

where the Fourier coefficientV(k) can be obtained from the inverse Fourier transform:

V(k) = 1

L

∫ L/2

−L/2
V (z)e−i(2πk/L)z dz. (2.4)

Since 1/m∗(z) and eFz are continuous functions ofz, they can be expanded in Fourier
series with Fourier coefficientsm(k) andf (k) respectively. The BenDaniel–Duke expression,
equation (2.1), in terms of the Fourier coefficientsCn(k), V(k), m(k), andf (k), may be
expressed as [18,19]∑

l

H (k − l)Cn(l) = EnCn(k) (2.5)

where

H(k − l) = h̄2

2

(
2π

L

)2

m(k − l)kl + V(k − l) + f (k − l). (2.6)

This equation is expressed in matrix notation as

HCn = EnCn. (2.7)

The eigenvalues and eigenfunction coefficients are obtained by diagonalizing equation (2.7).
The eigenvalues as a function ofL give the stabilization graph (SG) [20,21]. The import-

ant feature of the SG is that it shows avoided crossings between the stable and continuum
states. The extraction of the resonance widths from the SG in quantum chemistry problems
such as those of electron–atom and electron–molecule scattering was pioneered by Taylor [25]
and co-workers. In the standard golden-rule-type formula, the resonance width(0) is given
by [20,21]

0 = 2πρ(E)V 2
c (2.8)

where the interaction termVc is taken to be half the energy splitting at the pseudo-crossing
(Lc) of the SG, andρ(E) is the density of the continuum states.

This method has been employed to extract the ground-state resonant energyEr and the
resonance width0 for the QW under a uniform electric field [20,21]. However, in this method
the accurate determination ofVc andρ(E) is difficult, as they both involve the estimation of
an exactLc and the values ofE at this point. In a QW under a low electric field,0 is expected
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to be quite small, as a result of which this method gives less accurate values [20]. Recently,
Taylor’s group has presented a novel approach for extracting the accurateEr and0s from the
SG [26]. They have recognized that the density of resonance states calculated nearLc would
show a Lorentzian shape, so the resonance peak and its width can be easily extracted from
it. However, it is worth mentioning that the extraction ofEr and0 from the density of states
was first carried out by Austin and Jaros a long time ago [5]. In the following, the method for
calculating the density of resonance states is described.

The density of resonance states is given by

ρL(E) =
∑
n

δ(En(L)− E) (2.9)

whereEn(L) is the box eigenvalue of the system. SinceρL(E) is independent ofL in any
given range1L, we can average the right-hand side of equation (2.9) over the parameterL as
follows [26]:

〈ρL(E)〉 ≈ 1

1L

∫ L+1L/2

L−1L/2
dL ρL(E). (2.10)

Substituting equation (2.9) in equation (2.10), we obtain

〈ρL(E)〉 = 1

1L

∑
n

∫ L+1L/2

L−1L/2
dL δ(En(L)− E). (2.11)

We have the relation∫ ∞
−∞

dx δ(f − f (x)) = mod

(
df

dx

)−1

f (x)=f
. (2.12)

Taking1L→∞ in equation (2.11) and using the relation (2.12), we obtain

〈ρL(E)〉 = 1

1L

∑
n

mod

(
dEn(L′)

dL′

)−1

En(L′)=E
. (2.13)

The indexn sums the derivative ofEn versusL, satisfying the conditions

En(L
′) = E L−1L/2< L′ < L +1L/2. (2.14)

In order to decrease the statistical error, we need to take1L large enough that the number of
eigenvaluesEn(L′) satisfying condition (2.14) will be sufficient to produce convergence. We
would like to mention here that the equation for the density of states (2.13) is different from
that used by Austin and Jaros [5]. In the present case, the contributions from the excited states
are included.

The density of resonance states contains contributions from two regions. It exhibits a
resonance behaviour near the avoided crossing pointLc and a flat background(BL), where
En(L) is described by straight lines:

ρL(E) = ρrL(E) +BL. (2.15)

ρrL(E) is the expected resonant part which stabilizes, becoming independent ofL, and it is
described by a Lorentzian. The background is independent ofE andL. Thus equation (2.15)
can be expressed as

ρL(E) = 1

π

0/2

(Er − E)2 + 02/4
+BL. (2.16)

We observe that the inverse of the derivative of the energy levels with respect toL is needed
in equation (2.13) to obtain the density of resonance states. The method for calculating the
derivatives is described in appendix A.
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The stabilization method is applicable only for low electric field strength. For high electric
field intensity, a direct solution of equation (2.7) by the matrix diagonalization method will
result in the localizing of some of the wavefunctions in the triangular well. Moreover, the
diagonalization method fails to include the zero-field structure. It was demonstrated earlier
using our finite-difference scheme [14,15] that the inverse-power method (IPM), which solves
for the energy and wavefunction iteratively, produces correct results. However, in the finite-
difference method the wavefunction is obtained in position space. It will be interesting to
observe whether the Fourier coefficients obtained in the IPM can generate oscillations in the
wavefunction outside the well region under a high electric field. From equation (2.7) we can
formulate the following coupled equations, which can be solved iteratively to obtain the energy
and Fourier coefficients for the wavefunction for thenth state:

C(m)n = [H − IE(m−1)
n ]−1C(m−1)

n (2.17a)

C(m)n =
C(m)n

〈C(m)n |C(m)n 〉
(2.17b)

E(m)n = 〈C(m)n |H |C(m)n 〉. (2.17c)

In principle, the starting energy and Fourier coefficients can be chosen arbitrarily. However,
we find that the number of iterations is decided by how correct the starting vector is. Therefore
we start the iteration process by choosing the energy and Fourier coefficients at zero electric
field. In this way we need only three iterations to get converged results.

The mean tunnelling lifetime at high electric field can be calculated from the probability
of the electrons tunnelling out of the well [13–15]. The bias is suddenly applied att = 0. The
tunnelling probability for a state at an energyE is calculated by projecting the wavefunction
at timet with the initial wavefunction att = 0. In the present work, we have considered the
ground state to study the tunnelling probabilities:

PE(t) = 1−
∣∣∣∣∫ 9∗E(z, 0)9E(z, t) dz

∣∣∣∣2 (2.18)

where9E(z, 0) is the solution of the time-independent equation (2.1) for the ground-state
energyE. We can find from equation (2.18) that att = 0, PE(t) = 0, and at large time,
the overlap of9E(z, t) with 9E(z, 0) becomes exceedingly small, with the result thatPE(t)

approaches unity. To get9E(z, t), one has to solve the time-dependent BenDaniel–Duke
equation: [

− h̄
2

2

∂

∂z

1

m∗(z)
∂

∂z
+ V (z) + eFz

]
9E(z, t) = ih̄

d

dt
9E(z, t). (2.19)

The finite-difference approach has been successfully applied to give9E(z, t) for single-
rectangular [12, 13] and diffusion-modified QWs [15]. Assuming a constant effective mass,
Bala and Bala applied the Chebyshev polynomial expansion method to calculate9E(z, t) [27].
We have formulated a computational scheme based on the Fourier series method, in which the
effective mass of the barriers is not taken into account. The details of this method are described
in appendix B. In this method,9E(z, t) is expanded in a Fourier series as

9E(z, t) =
√

1

L

∑
k

Dt (k)ei(2πk/L)z (2.20)

where the time dependence is included in the Fourier coefficientDt(k). In this method,D(k)
at t is obtained from the following iterative equation:

Dt(k) =
∑
j

∑
l

3(k − j)exp

(
−i
δt

h̄

{
h̄2

2m∗(0)

(
2πj

L

)2})
3(j − l)Dt−δt (l) (2.21)
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where3(k) is defined as

3(k) = 1

L

∫ L/2

−L/2
e−(i/2h̄)[V (z)+eFz]δte−i(2πk/L)z dz. (2.22)

Since the electric field is applied att = 0,D(k) at t = 0 is taken to be the time-independent
ground-state(n = 1) wavefunction coefficientC(k) in equation (2.2). Substituting equ-
ations (2.2) and (2.20) in equation (2.18), we find

PE(t) = 1−
∣∣∣∣∣∑
k

C∗(k)Dt(k)

∣∣∣∣∣
2

. (2.23)

In the present work we have takenδt to be 1× 10−17 s.
In order to demonstrate the potential of the Fourier series method for the calculation of

the energy and its width at both low and high electric fields, we have chosen three different
types of QW structure, namely the single-rectangular quantum well (RQW), the symmetric
double quantum well (SDQW), and the annealing-induced diffusion-modified quantum well
(DMQW). We present our results and compare them with the Airy function approach in the
next section.

3. Results and discussion

3.1. The single-rectangular quantum well

The Stark shifts and resonance widths have been thoroughly studied in the single-RQW using
different analytic and numerical techniques [9, 10, 12–16, 18–20]. We therefore calculate the
mean tunnelling lifetimes for this well to verify the correctness of our calculation. The potential
profile for a single-RQW is given by

V (z) =
{
V0 for |z| > l/2
0 for |z| < l/2

(3.1)

whereV0 = Boff [Eg(x) − Eg(0)] and l is the width of the well.Eg(x) andEg(0) are the
band gaps of AlxGa1−xAs and GaAs respectively.Boff is the band offset, usually taken to
be 0.7. The expressions forEg(x) andm∗(x) at room temperature were given in our earlier
work [14]. The width of the well is taken to be 100 Å, andx = 0.353 which corresponds to
the barrier height of 340 meV. The potential profileV (z) under the application of the electric
field is shown in figure 1. At zero electric field intensity, there are three bound states in this
well corresponding to energies of 33.70 meV, 134.11 meV, and 289.88 meV.

At the field intensity 250 kV cm−1, the energy levels calculated as a function ofL are
shown in figure 2. The avoided crossings between stable and unstable eigenvalues at different
values ofLc for both the ground-state and the first-excited-state energy levels are clear in this
figure. For the calculation of the density of resonance states we need to find the derivatives of
the energies with respect toL. We present analytical methods for doing this in appendix A.
The calculated derivatives are shown in figure 3. The strength of the inverse of the derivatives
decreases with increasing quantum level. Therefore the summation in equation (2.13) is
convergent, and we needed only ten avoided crossing points to obtain an accurate density of
states. To produce figure 4, we first subtracted the constant background from the density of
resonance states and then fitted it with a Lorentzian to obtainEr and0. We repeated this
procedure for the electric field at 100 kV cm−1, 150 kV cm−1, 200 kV cm−1, 250 kV cm−1,
and present the results in table 1. In order to compare the accuracy of our calculations, we
have calculatedEr and0 in the Airy function approach where the barrier effective mass is
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Figure 1. Potential profiles of the single-rectangular quantum well under a uniform electric field.
The potential profiles are calculated using equations (2.3), (2.4), and (3.1), wherex = 0.353,
l = 100 Å,Boff = 0.7, andF = 100 kV cm−1. The dashed curve and the solid curve are the
potential profiles calculated using 101 and 901 plane waves respectively.

Figure 2. The stabilization graph of the single-rectangular quantum well with well width 100 Å and
x = 0.353 at the applied field strength 250 kV cm−1. The energy levels for the ground, first, second,
third, fourth, fifth, and sixth excited states are denoted by solid, long-dashed, medium-dashed,
short-dashed, dotted, dot–dashed, dot–dot–dashed, solid, and long-dashed curves respectively.
The avoided crossings are clearly seen here. The avoided crossings for the ground and first exited
states are shown here.

incorporated [12], and present the results in table 1. From table 1 it is clear that the present
technique for extractingEr and0 from the SG is in good agreement with the exact method.
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Figure 3. The inverse of the derivative of the ground-state energy levels versusL for the SG shown
in figure 2.

Figure 4. The density of res-
onance states with the fitted
Lorentzian for the ground state
of the single-rectangular quan-
tum well. The calculated den-
sity of resonance states and the
fitted Lorentzian are shown by
solid dots and the solid curve re-
spectively.
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Table 1. Comparison of the ground-state energyEr and tunnelling rate0 for a single-rectangular
quantum well in the stabilization and Airy function methods.

Stabilization method Airy function method

F Er 0 Er 0

(kV cm−1) (meV) (meV) (meV) (meV)

100 28.176 1.214× 10−12 28.117 1.055× 10−12

150 21.461 4.154× 10−9 21.461 4.357× 10−9

200 12.672 3.175× 10−7 12.637 3.206× 10−7

250 2.097 1.239× 10−6 2.187 1.255× 10−6

The energy levels calculated at higher field strength using the IPM are compared with
the Airy function method in table 2. Unlike in the case of the low electric field intensity, the
energies are not so accurately estimated in the IPM for higher field strength. Since the particle
starts tunnelling out of the well at high electric field, it requires a largeL in our calculation.
This in turn needs a large number of plane waves for convergence. In our calculation we have
used 901 plane waves, which are not sufficient to achieve convergence. In order to demonstrate
this, the ground-state wavefunctions calculated in the Airy function method and the IPM at
350 kV cm−1 are shown in figure 5. We find that there is a slight disagreement between these
two methods. In order to reproduce exact energies at the field strengths 300 kV cm−1 and
350 kV cm−1, we need to use 1201 and 1501 plane waves respectively.

Table 2. Comparison of the ground-state energyEr in the single-rectangular quantum well in the
inverse-power and Airy function methods. The ground-state0s are calculated from the wave-packet
solution and compared with those obtained in the Airy function method.

This work Airy function method

F Er 0 Er 0

(kV cm−1) (meV) (meV) (meV) (meV)

300 −9.751 1.596× 10−3 −10.160 8.071× 10−4

350 −22.811 2.322× 10−3 −23.719 1.312× 10−3

400 −36.463 5.224× 10−3 −38.455 3.030× 10−3

The probability of tunnellingPE(t) for the ground-state energyE is shown in figure 6 for
field strengths of 300 kV cm−1 and 400 kV cm−1. We find that it initially shows oscillations,
and then reaches a steady state. Oleinik and Arepjev have presented a numerical method in
order to give an understanding of the behaviour of the wave packets in a rectangular well under
an electric field applied only on one side of the well [28]. They have described how the sudden
application of the bias produces an intense shaking of the system. The electrons are largely
knocked out of the initial stationary state, passing into continuous spectra states. The wave
packets formed by the continuous spectra states are spread out over time. However, after a short
interval of time the wave packet can be described by a superposition of the quasi-stationary
states with finite lifetimes. The oscillations inPE(t) arise from the interference of the transition
amplitudes corresponding to the electron jumping from the levelE to the neighbouring levels.
The period of the oscillations inPE(t) may be understood in terms of the classical frequency
of the wave packet, which arises from the superposition of the quasi-stationary states in the
QW [29]. The tunnelling of the electron through the barrier takes place through the bound
electron states in the well. The physical situation in the present case is qualitatively the same
as that described above.
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Figure 5. The ground-state wavefunction of the single-rectangular well in the inverse-power and
Airy function methods under an applied electric field of 350 Å are shown as solid and dashed curves
respectively.

Figure 6. The tunnelling prob-
abilities at 300 kV cm−1 and
400 kV cm−1 are shown by
the dotted curve and solid curve
respectively.
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For long times the probability may be described asP(t) = 1− exp(−0t). For different
field strengths, the resonance widths are tabulated in table 2. For comparison, we have evaluated
0 using the Airy function approach where the barrier effective mass is not taken into account.
We find that in this calculation the resonance widths are longer than those obtained from the
exact method. Since the process of the tunnelling of the electron in this analysis is different
from those in the Airy function approach which utilizes stationary waves, the mean tunnelling
lifetimes are different. It needs more elaborate analysis to understand this difference. One
possibility is that the electrons go to higher quasi-bound states in the wave packet and thus
need less time to tunnel out of the well.

3.2. The symmetric double quantum well

In the present section we study the RDQW, which has the potential profile

V (z) =


0 for h/2< |z| < l + h/2

V0 for |z| 6 h/2
V0 for |z| > l + h/2

(3.2)

wherel andh are the width of the well and the separation distance between the two symmetric
wells. The potential profile calculated takingl = 60 Å,h = 40 Å,x = 0.353, andF = 100 kV
is shown in figure 7. At zero electric field strength, we obtain four energy levels, namely,
68.17 meV, 70.99 meV, 257.23 meV, and 276.50 meV. The ground-state and first-excited-state
energy levels in a single-RQW with width 60 Å are 68.98 meV and 263.61 meV respectively.
Due to the interaction of the two wells in the SDQW, the energy level first reduces by the shift
integral term and then the degeneracy is lifted by the transfer integral term [2]. The symmetric
and antisymmetric combinations of the transfer integrals give rise to two closely spaced energy
levels. The energy levels at 68.98 meV in the single-RQW give rise to the two energy levels
68.17 meV and 70.99 meV, and the first-excited-state energy level 264.61 meV gives rise to
the energy levels 257.23 meV and 276.50 meV. The analytic expressions for calculating the
resonance widths from the SG are given in appendix A. The resonance positions and widths
of the ground-state energy levels calculated from the SG for different field intensities are
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Figure 7. Potential profiles of the symmetric double quantum well under a uniform electric field.
The width of the well and the separation length between wells are 60 Å and 40 Å respectively. The
other parameters are the same as for figure 1. The dashed and solid curves are calculated using 201
and 1201 plane waves respectively.
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shown in table 3. We obtain excellent agreement between the present stabilization and Airy
function methods. The energy level decreases very quickly with increasing field strength. The
resonance widths are found to be very small in this well. Unlike in the single-RQW where
the particle encounters only one barrier region, in the present case the particle needs to tunnel
through two barrier regions, and so it requires a longer time to escape.

Table 3. Comparison of the ground-stateEr and0s for the symmetric double quantum well
calculated in the stabilization and the Airy function methods. The resonance width at 80 kV cm−1

is too small to be accurately calculated in the stabilization method.

Stabilization method Airy function method

F Er 0 Er 0

(kV cm−1) (meV) (meV) (meV) (meV)

80 28.177 28.050 1.373× 10−17

100 17.581 1.898× 10−14 17.351 2.376× 10−14

120 6.887 5.853× 10−12 6.753 3.491× 10−12

The quasi-bound energies for higher field strengths calculated using the IPM are compared
with those obtained by the exact method in table 4. Unlike in the case of the single-RQW,
we find good agreement between these two methods for this well using only 901 plane waves.
Since the tunnelling time is quite short, the method does not require a large number of plane
waves as it does for the single-RQW.

Table 4. Comparison of the ground-stateEr for the symmetric double quantum well in the inverse-
power and Airy function methods. The ground-state0s are calculated from the wave-packet
solution and compared with those obtained in the Airy function method.

This work Airy function method

F Er 0 Er 0

(kV cm−1) (meV) (meV) (meV) (meV)

150 −9.484 8.963× 10−10 −9.552 4.963× 10−10

180 −26.986 6.337× 10−8 −25.052 1.337× 10−8

200 −37.140 9.906× 10−8 −37.151 6.906× 10−8

The probability of tunnelling is shown in figure 8 for field strengths of 150 kV cm−1

and 200 kV cm−1. It shows oscillations as in the single-RQW. The difference is thatPE(t)

approaches unity during the initial oscillations. This results from the tunnelling of the wave
packet at the barrier between the two wells. At long times, the probability decreases from unity,
showing that the effect of the barrier between two wells reduces on the tunnelling of the wave
packet out of the well. The calculated resonance widths are compared with those obtained
from the Airy function method and presented in table 4. As in the case of the single-RQW, we
find that the resonance widths are larger in the wave-packet tunnelling scheme.

3.3. The diffusion-modified quantum well

When the RQW is subjected to annealing above 800◦C, intermixing starts at the hetero-
junction, and the formation of Ga vacancies induces Al atoms to diffuse into the GaAs layer
from the AlGaAs region [30,31]. The interdiffusion process is therefore characterized by the
Al diffusion length(Ld =

√
Dt)which can be obtained from the diffusion constant(D) at the

annealing temperature and annealing time(t). Taking the diffusion constant to be isotropic,
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Figure 8. The tunnelling probabilities at 150 kV cm−1 and 200 kV cm−1 are shown by the dotted
curve and solid curve respectively.

the position-dependent Al concentration is found from the diffusion equation as [30,31]

w(z) = x
[
1− 1

2

{
erf

(
l + 2z

4Ld

)
+ erf

(
l − 2z

4Ld

)}]
(3.3)

where erf is the error function [32] andl is the width of the rectangular QW. The potential
profile is expressed as

V (z) = Boff [Eg(w(z))− Eg(w(0))]. (3.4)

We have takenx = 0.353,l = 100 Å, andLd = 20 Å. The potential profiles with and without
an electric field are shown in figure 9. We have carried out the integration for calculatingV(k)
andm(k), respectively, using the fast Fourier transform method, as the analytic integrations
are difficult in this case. The derivatives of the functionsV(k) andm(k) with respect toL
are also taken numerically. The ground-state energies and resonance widths for different field
intensities are presented in table 5. The energies agree with our earlier calculation based on
the finite-difference method [15]. However, the resonance widths are different, as the earlier
results were based on time-dependent analysis. The resonance width increases very quickly
with increasing electric field compared to that in the single-RQW under the same electric field.
This happens as a result of the less abrupt shape of the tunnelling barrier.

The energy levels for higher field strengths obtained from the IPM are tabulated in table 6.
We find that our results are in poor agreement with those computed in the Airy function
approach for high electric field. However, the results can be improved by including more
plane waves. The resonance widths obtained from the wave-packet tunnelling without taking
the barrier effective mass into account are found to be slightly larger than those obtained in
the Airy function method.
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Figure 9. Potential profiles of the diffusion-modified quantum well under a uniform electric field
of intensity 100 kV cm−1. The width of the well is taken to be 100 Å and the diffusion constant
(Ld) =20 Å. The other parameters are the same as for figure 1. The dashed curve and solid curve
are the potential profiles calculated using 91 and 401 plane waves respectively. In this case a large
number of plane waves are not necessary to achieve convergence because of its non-abrupt barrier.

Table 5. Comparison of the ground-stateEr and0s for the single diffusion-modified quantum
well calculated in the stabilization and the Airy function methods.

This work Airy function method

F Er 0 Er 0

(kV cm−1) (meV) (meV) (meV) (meV)

100 55.489 1.889× 10−10 55.521 2.362× 10−10

150 49.918 1.381× 10−6 49.936 1.445× 10−6

200 41.761 2.120× 10−4 41.653 2.071× 10−4

250 30.557 1.342× 10−3 30.193 1.250× 10−3

300 15.340 6.170× 10−3 15.265 5.793× 10−3

Table 6. Comparison of the ground-stateEr in the diffusion-modified quantum well in the inverse-
power and Airy function methods. The ground-state0s are calculated from the wave-packet
solution and compared with those obtained in the Airy function method.

This work Airy function method

F Er 0 Er 0

(kV cm−1) (meV) (meV) (meV) (meV)

350 −2.152 2.720× 10−2 −2.071 1.519× 10−2

400 −19.214 5.811× 10−2 −20.466 1.520× 10−2

450 −30.841 2.104× 10−1 −38.957 4.598× 10−2

4. Conclusions

In the present work we have applied the Fourier series method to calculate the ground-state
quasi-bound energy levels together with their resonance widths in the rectangular, symmetric
double, and diffusion-modified QWs under low and high electric field. In our time-dependent
Schr̈odinger equation, we are unable to incorporate the barrier effective mass. However, the
present wave-packet solution scheme is an order of magnitude faster than our previous scheme
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based on the finite-difference method [15]. The probability of tunnelling gives more insight
into the tunnelling process caused by the impact of a sudden bias than the lifetimes calculated
from it. For low electric fields we have observed the collapse and revival of the wave packets;
this is at variance with the recent analysis by Bluhmet al [29]. Work is in progress with the
aim of finding an explanation of this feature.

Appendix A. Evaluation of the derivatives of the eigenvalues

The energy eigenvalues are generally calculated from wavefunctions as

En =
∫
9∗n(z)H(z)9(z) dz. (A.1)

Substituting equation (2.2) in equation (A.1) we obtain

En =
∑
k

∑
k′
C∗n(k)H(k − k′)Cn(k′). (A.2)

Since we find thatCn(k) does not depend onL, we take the derivative only ofH(k − k′):
∂En

∂L
=
∑
k

∑
k′
C∗n(k)

[
∂H(k − k′)

∂L

]
Cn(k

′). (A.3)

We can find from equation (2.6) that

∂H(k − k′)
∂L

= − 2

L
m(k − k′)kk′

(
2π

L

)2

+

(
2π

L

)2

kk′
∂m(k − k′)

∂L
+
∂V(k − k′)

∂L
+
∂f (k − k′)

∂L
. (A.4)

We need to evaluate the Fourier coefficientsm(k), ∂m(k)/∂L, ∂V(k)/∂L, and∂f (k)/∂L to
calculate equation (A.4). The Fourier coefficientm(k) is defined as

m(k) = 1

L

∫ L/2

−L/2

1

m∗(z)
e−i(2πk/L)z dz. (A.5)

The Fourier coefficient of the uniform electric field is given by

f (k) = eF

L

∫ L/2

−L/2
ze−i(2πk/L)z dz. (A.6)

Solving this exact integral, we obtain

f (k) = − i

2
eFLy0(πk) (A.7)

wherey0(x) = cos(x)/x. The derivative off (k) with respect toL is given by

∂f (k)

∂L
= − i

2
eFy0(πk). (A.8)

A.1. The single-rectangular quantum well

V(k) for the single-RQW is obtained by substituting equation (3.1) in equation (2.4):

V(k) = V0

[
j0(πk)− l

L
j0

(
πk

l

L

)]
(A.9)
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wherej0(x) is the spherical Bessel function of 0th order. The derivative∂V(k)/∂L is obtained
as

∂V(k)
∂L

= V0
l

L2
cos

(
πk

l

L

)
. (A.10)

The Fourier coefficient of the effective massm(k) in this well is derived as

m(k) =
[

1

m∗(x)
− 1

m∗(0)

]
l

L
j0

(
πk

l

L

)
+

1

m∗(0)
j0(πk). (A.11)

The derivative ofm(k) is found from equation (A.11) as

∂m(k)

∂L
=
[

1

m∗(x)
− 1

m∗(0)

]
l

L2
cos

(
πk

l

L

)
. (A.12)

A.2. The symmetric double quantum well

Substituting equation (3.2) in equation (2.4) we findV (k) for the SDQW as follows:

V (k) = V0

[
j0(πk) +

h

L
j0

(
πk
h

L

)
− 2l + h

L
j0

(
πk

2l + h

L

)]
. (A.13)

The derivative is obtained as
∂V (k)

∂L
= V0

[(
2l + h

L2

)
cos

(
πk

2l + h

L

)
− h

L2
cos

(
πk
h

L

)]
. (A.14)

m(k) for this well is obtained as

m(k) =
[

2l + h

L
j0

(
πk

2l + h

L

)
− h

L
j0

(
πk
h

L

)][
1

m∗(0)
− 1

m∗(x)

]
+

1

m∗(x)
j0(πk).

(A.15)

The derivative ofm(k) is found to be

∂m(k)

∂L
=
[

1

m∗(x)
− 1

m∗(0)

] [(
2l + h

L2

)
cos

(
πk

2l + h

L

)
− h

L2
cos

(
πk
h

L

)]
. (A.16)

The Fourier coefficients ofV (k),m(k), and their derivatives for the single-RQW are reproduced
by takingh = 0 and 2l = l in the corresponding expressions for the SDQW.

Appendix B. Solution of the time-dependent Schr̈odinger equation

The solution of the time-dependent BenDaniel–Duke expression, equation (2.19), is given
by [33]

9E(z, t + δt) = exp

(
− i

h̄

[
− h̄

2

2

∂

∂z

1

m∗(z)
∂

∂z
+ V (z) + eFz

]
δt

)
9E(z, t). (B.1)

The kinetic and potential energy operators are separated as follows:

9E(z, t + δt) = exp

(
− i

h̄

[
− h̄

2

2

∂

∂z

1

m∗(z)
∂

∂z

]
δt

)
exp

(
− i

h̄
[V (z) + eFz] δt

)
9E(z, t).

(B.2)

However, equation (B.2) violates the Baker–Campbell–Hausdorff (BCH) theorem [33] which
states that

eAeB = eA+B+C1+C2+ ··· (B.3)



Tunnelling of electrons out of quantum wells 5309

whereC1 = 1
2[A,B], C2 = 1

12([A, [A,B]] − [B, [A,B]]). Since the kinetic energy
operator does not commute with the potential energy operator,C1, C2, and all higher-order
Cs have non-zero values. However, ifδt is sufficiently small, we can adopt the split-operator
formalism [33,34] in order to express equation (B.2) as

9E(z, t + δt) = exp

(
− i

2h̄
[V (z) + eFz] δt

)
exp

(
− i

h̄

[
− h̄

2

2

∂

∂z

1

m∗(z)
∂

∂z

]
δt

)
× exp

(
− i

2h̄
[V (z) + eFz] δt

)
9E(z, t). (B.4)

The ground-state wavefunction att = 0 is expressed in the Fourier series as

9E(z, 0) =
√

1

L

∑
k

C(k)ei(2πk/L)z. (B.5)

We first operate with the potential energy term on9E(z, 0) in equation (B.4), and define this
as

8(z) = e−(i/2h̄)[V (z)+eFz]δt9E(z, 0). (B.6)

Since8(z) is continuous withz, we can expand it in a Fourier series as

8(z) =
∑
k

φ(k)ei(2πk/L)z. (B.7)

Substituting (B.5) in (B.6) and performing an inverse Fourier transform, we calculateφ(k) as

φ(k) =
∑
j

C(j)3(k − j) (B.8)

where3(k) is defined as

3(k) = 1

L

∫ L/2

−L/2
e−(i/2h̄)[V (z)+eFz]δte−i(2πk/L)z dz. (B.9)

The kinetic energy part is then used to operate on8(z):

4(z) = exp

(
−(i δt/h̄)

[
− h̄

2

2

∂

∂z

1

m∗(z)
∂

∂z

]
δt

)
8(z). (B.10)

The function4(z) can be expanded in a Fourier series:

4(z) =
∑
k

ξ(k)ei(2πk/L). (B.11)

Sinceδt is exceedingly small, we can expand the kinetic energy operator in equation (B.10)
in Taylor’s series:∑
k

ξ(k)ei(2πk/L)z =
[
1− i

δt

h̄

(
− h̄

2

2

∂

∂z

1

m∗(z)
∂

∂z

)
+ · · ·

]∑
l

φ(l)ei(2πl/L)z. (B.12)

On simplification, we obtain

ξ(k) = φ(k)− i
δt

h̄

[
h̄2

2

(
2π

L

)2∑
l

m(k − l)φ(l)kl + · · ·
]
. (B.13)

The evaluation of the higher-order terms in this equation involves more convolution terms.
Takingm(k − l) = m∗(0)δkl and substituting in (B.13), we obtain

ξ(k) = φ(k)
[

1− i
δt

h̄

{
h̄2

2m∗(0)

(
2πk

L

)2}
+ · · ·

]
= φ(k)exp

(
−i
δt

h̄

{
h̄2

2m∗(0)

(
2πk

L

)2})
.

(B.14)
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Finally we proceed to operate with the potential energy onξ(z):

9(z, δt) = e−(i/2h̄)[V (z)+eFz]δt ξ(z). (B.15)

We can expand9(z, δt) as

9(z, δt) =
√

1

L

∑
k

D(k)ei(2πk/L)z. (B.16)

Using equation (B.9) we can obtainD(k) as

D(k) =
∑
j

ξ(j)3(k − j). (B.17)

Combining equations (B.8), (B.14), and (B.17), we find the solution of equation (B.4) to be as
follows:

D(k) =
∑
j

∑
l

3(k − j)exp

(
−i
δt

h̄

{
h̄2

2m∗(0)

(
2πj

L

)2})
3(j − l)C(l). (B.18)

To getD(k) for the time step 2δt , we must replaceC(l) in (B.8) byD(l) obtained for the time
stepδt . This procedure is then repeated to findD(k) for all time steps.

B.1. The single-rectangular quantum well

For the single-RQW, the expression for3(k) may be derived by substituting equations (3.1)
in equation (B.9) as follows:

3(k) = l

L
j0

[(
πk +

eFL

4h̄
δt

)
l

L

]
+ e−i(V0/2h̄)δt

[
j0

(
πk +

eFL

4h̄
δt

)
− l

L
j0

[(
πk +

eFL

4h̄
δt

)
l

L

]]
. (B.19)

B.2. The symmetric double quantum well

For the SDQW,3(k)may be derived by substituting equation (3.2) in equation (B.9) as follows:

3(k) = 2l + h

L
j0

((
πk +

eFL

4h̄
δt

)
2l + h

L

)
− h

L
j0

((
πk +

eFL

4h̄
δt

)
h

L

)
+ e−i(V0/2h̄) δt

[
j0

(
πk +

eFL

4h̄
δt

)
− 2l + h

L
j0

((
πk +

eFL

4h̄
δt

)
2l + h

L

)
+
h

L
j0

((
πk +

eFL

4h̄
δt

)
h

L

)]
. (B.20)

Under the conditionsh = 0 andl = 2l, equation (B.20) reproduces equation (B.19).
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